# GATEWAY INSTITUE OF ENGINEERING & TECHNOLOGY, SONEPAT LESSON PLAN

Name of the Faculty :Mr. Abhishek anand (Theory + Practical)

Discipline : Mechanical engineering

Semester : 4th

Subject : Hydraulics and Hydraulic Machine Lesson Plan Duration: 16 WEEKS( JANUARY TO APRIL)

|      |        | THEORY                                                     |           | PRACTICAL                      |  |
|------|--------|------------------------------------------------------------|-----------|--------------------------------|--|
|      | LECTUR |                                                            | PRACTICAL |                                |  |
| WEEK |        | TOPIC (INCLUDING ASSIGNMENT, TEST                          | DAY       | TOPIC                          |  |
|      |        | Introduction                                               |           |                                |  |
| 1st  | - 2    | Fluid, types of fluid;                                     |           | Introduction to various lab    |  |
|      |        | properties of fluid viz mass density, weight density       |           |                                |  |
|      |        | (specific weight), specific volume, specific gravity       | 1st       |                                |  |
|      | 4      | capillarity, viscosity, compressibility                    |           |                                |  |
|      |        | surface tension, kinematic viscosity and dynamic           |           |                                |  |
| 2nd  | 5      | viscosity and their units.                                 | 2nd       | Machine intro.                 |  |
|      |        | Pressure and its Measurement-Concept of pressure           |           |                                |  |
|      |        | (Atmospheric Pressure, gauge pressure, absolute            |           |                                |  |
|      | 6      | pressure)                                                  |           |                                |  |
|      | _      |                                                            |           | Measurement of pressure head   |  |
|      | 7      | Pascal's Law, Static Pressure                              |           | by employing.                  |  |
| 3rd  |        | Pressure measuring devices: peizometer tube                | 3rd       | i) Piezometer tube             |  |
|      | 8      | manometers - simple U-tube                                 |           |                                |  |
|      |        | differential single column, inverted U-tube, micro         |           | ii) Single and double column   |  |
|      | 9      | manometer including, numericals                            |           | manometer                      |  |
|      |        | Bourdon pressure gauge, Diaphragm pressure                 |           |                                |  |
|      |        | gauge, dead weight pressure gauge.                         |           |                                |  |
| 4th  | 11     | assignments of unit 1 & 2 test                             |           | Revision of last lab           |  |
|      |        | Types of fluid flow - steady and unsteady, uniform         |           |                                |  |
|      | 12     | and non-uniform, laminar and turbulent.                    | 4th       |                                |  |
|      | 13     | rate of flow and their units; continuity equation of flow. |           |                                |  |
|      |        | Potential Energy of a flowing fluid; total head;           | 5th       | Verification of Bernoulli's    |  |
|      |        | Bernoulli's theorem (statement and proof) and its          |           | theorem.                       |  |
| 5th  |        | applications.                                              |           |                                |  |
|      |        | Discharge measurement with the help of venturi-            |           |                                |  |
| - 1  | 16     | meter, orifice meter,                                      |           | To find out the value of       |  |
| 6th  |        | pitot-tube, limitations of Bernoulli's theorem             | 6th       | coefficient of discharge for a |  |
|      |        | problems and doubt clearance.                              |           | venturimeter                   |  |
|      |        | Definition of pipe flow, wetted perimeter                  |           |                                |  |
| _,   |        | hydraulic mean depth, hydraulic gradient                   |           | Measurement of flow by using   |  |
| 7th  |        | loss of head due to friction; Chezy's equation and         |           | venturimeter                   |  |
|      | 21     | Darcy's equation of head loss (without proof)              | 7th       |                                |  |
|      |        | Reynold's number and its effect on pipe friction           |           |                                |  |
|      |        | T F                                                        |           | !                              |  |

| 0.1  |      | siphon, Nozzle - definition, velocity of liquid            | 0.1    | To find coefficient of friction                       |
|------|------|------------------------------------------------------------|--------|-------------------------------------------------------|
| 8th  | 23   | flowing through the nozzle, power developed                | 8th    | for a pipe (Darcy's friction).                        |
|      | 24   | Water hammer, anchor block, syphon, surge tank.            |        |                                                       |
|      |      | Loss of head in pipes due to sudden enlargement,           |        |                                                       |
|      |      | sudden contraction, obstruction on flow path, change of    |        |                                                       |
| 9th  | 25   | direction and pipe fittings                                | 9th    | Revision of last lab                                  |
|      | 26   | numerical                                                  |        |                                                       |
|      | 27   | Assignments of unit 3rd and 4th, Class Test                |        |                                                       |
|      | 28   | introduction to Flow through Orifices                      |        |                                                       |
| 10th | 29   | various coefficient of discharge Cc, Cv, Cd                |        | Revision of last lab                                  |
|      | 30   | flow through drowned, partially drowned orifices           | 10th   |                                                       |
|      | 31   | time for emptying a tank through a circular orifice        |        |                                                       |
| 11th | 32   | problems and doubt clearance.                              | 11th   | Revision of last lab                                  |
|      | 33   | Hydraulic Machines - introduction                          |        |                                                       |
|      |      | Description, operation and application of hydraulic        |        |                                                       |
|      | 34   | systems – hydraulic ram, hydraulic jack                    |        |                                                       |
| 124  |      | Description, operation and application of hydraulic        | 1 241- | To study hydraulic circuit of an automobile brake and |
| 12th | 35   | brake, hydraulic accumulator.                              | 12th   | hydraulic ram                                         |
|      |      | Description, operation and application of hydraulic        |        | llydraune ram                                         |
|      | 36   | door closer,hydraulic press                                |        |                                                       |
|      |      | Selection of specification of above systems for            |        |                                                       |
|      | 37   | different applications.                                    |        |                                                       |
|      | 38   | Concept of a turbine                                       |        | Revision of last lab                                  |
|      |      | Types of turbines –impulse and reaction type.              |        |                                                       |
| 13th | 39   | difference between them                                    | 13th   |                                                       |
|      |      | Construction and working of pelton wheel                   |        |                                                       |
|      | 41   | Construction and working of Francis turbine                | 14th   |                                                       |
|      |      | Construction and working of Propeller and Kaplan           | 14111  | Study the working of a Pelton                         |
| 14th |      | turbines                                                   |        | wheel and Francis turbine.                            |
|      | 43   | Unit speed, unit power, unit discharge                     |        |                                                       |
|      |      | specific speed of turbines, selection of turbines based on | 15th   | Revision of last lab                                  |
|      |      | specific speed.                                            | 1001   | Trevision of fast las                                 |
| 15th | 45   | Concept of hydraulic pump                                  |        |                                                       |
|      |      | single acting reciprocating pump (construction &           |        |                                                       |
|      | 46   | Operation)                                                 |        | To study a single stage                               |
|      | 4.77 | vane, screw and gear pumps, Construction, working and      |        | centrifugal pump for                                  |
|      | 47   | operation of centrigual pump.                              |        | constructional details and its                        |
| 1.64 | 40   | Performance, efficiencies and specifications of a          | 1.6.1  | operation to find out its normal                      |
| 16th | 48   | centrifugal pump                                           | 16th   | head and discharge.                                   |
|      | 40   | Trouble shooting and problems in centrifugal pumps         |        |                                                       |
|      |      | and remedial measures                                      |        | Final yr paper discussion                             |
| 1745 |      | pitting, cavitation, priming revision                      | 1744   |                                                       |
| 17th | 31   | 1CV1SIUII                                                  | 17th   |                                                       |

## GATEWAY INSTITUE OF ENGINEERING & TECHNOLOGY, SONEPAT LESSON PLAN

Name of the Faculty :Mr. Kuldeep Dahiya (Theory+Practicals)

Discipline : Mechanical engineering

Semester :4th

Subject : Materials And Metallurgy

Lesson Plan Duration:16 WEEKS( JANUARY TO APRIL)

|      |        | THEORY                                                 |           | PRACTICAL                       |
|------|--------|--------------------------------------------------------|-----------|---------------------------------|
|      | LECTUR |                                                        | PRACTICAL |                                 |
| WEEK | E DAY  | TOPIC (INCLUDING ASSIGNMENT, TEST)                     | DAY       | TOPIC                           |
|      | 1      | Material, History of Material Origin                   |           | Classification of about 25      |
|      | 2      | Scope of Material Science, Overview of                 |           | specimens of                    |
| 1st  | 2      | different engineering materials and applications       | 1st       | materials/machine parts into    |
|      | 2      | Classification of materials, Thermal, Chemical,        |           | (i) Metals and non metals       |
|      | 3      | Electrical                                             |           | (ii) Metals and alloys          |
|      | 4      | Mechanical properties of various materials,            |           | Classification of about 25      |
|      | 4      | Present and future needs of materials                  |           | specimens of                    |
| 2nd  | 5      | Overview of Biomaterials and semiconducting            | 2nd       | materials/machine parts into    |
| ZIIG | ,      | materials                                              | 2110      | (iii) Ferrous and non ferrous   |
|      | 6      | Various issues of Material Usage-Economical,           |           | metals                          |
|      | U      | Environment and social                                 |           | (iv) Ferrous and non ferrous    |
|      | 7      | Test of Unit 1                                         |           | Given a set of specimen of      |
| 3rd  | 8      | Crystal, Unit Cell, Space Lattice                      | 3rd       | metals and alloys (copper,      |
|      | 9      | Arrangement of atoms in simple cubic crystals          |           | brass, aluminium, cast iron,    |
|      | 10     | BCC, FCC and HCP Crystals, Number of atoms per         |           |                                 |
|      | 10     | unit cell                                              |           |                                 |
| 4th  | 11     | Atomic Packing Factor                                  | 4th       | Revision                        |
| 4111 |        | Overview of deformation behaviour and its              | 401       | Kevision                        |
|      | 12     | mechanisms, behaviour of material under load and       |           |                                 |
|      |        | stress-strain.                                         |           |                                 |
|      | 13     | Dverview of failure modes, fracture, fatigue and creep | •         | Study of host treatment         |
| 5th  | 14     | Test of Unit 2                                         | 5th       | Study of heat treatment furnace |
|      | 15     | History and development of iron and steel              |           | Turnace                         |
|      | 16     | Different iron ores                                    |           |                                 |
| 6th  | 17     | Raw Materials in Production of Iron and Steel          | 6th       | Revision                        |
|      | 18     | Basic Process of iron-making and steel-making          | 1         |                                 |
|      | 19     | Classification of iron and steel                       |           |                                 |
|      | 20     | Different types of Cast Iron, manufacture and their    |           | Study of a metallurgical        |
| 7th  | 20     | usage                                                  | 7th       | microscope and a specimen       |
|      | 21     | Steels and alloy steel, Classification of plain carbon |           | polishing machine               |
|      | 21     | steels                                                 |           | -                               |
|      |        | Availability, Properties and usage of different types  |           |                                 |
|      | 22     | of plain carbon steel                                  |           |                                 |
| 0.1  |        |                                                        | 0.1       | <b>.</b>                        |
| 8th  | -      | Effect of various                                      | 8th       | Revision                        |
|      | 23     | alloys on properties of steel                          |           |                                 |
|      | 24     | Uses of alloy steels                                   | 1         |                                 |
|      | 25     | Properties and uses of Light Metals and their alloys   |           | To prepare specimens of         |
|      |        |                                                        | 0.1       | following materials for         |
| 9th  | 26     | properties and uses of White Metals and their alloys   | 9th       | microscopic examination & to    |
|      | 27     | Revision And Assignment                                | 1         | Examine the microstructure of   |
|      | 28     | Test of unit 3                                         |           | To prepare specimens of         |
| 1    |        | 1 tot of time o                                        | 1         | 15 propule specimens of         |

| 10th   | 29 | Purpose of heat treatment, Solid solutions and its types | 10th   | following materials for microscopic examination & to |
|--------|----|----------------------------------------------------------|--------|------------------------------------------------------|
|        | 30 | Iron Carbon diagram                                      |        | Examine the microstructure of                        |
|        | 31 | Formation and decomposition of Austenite                 |        |                                                      |
|        | 32 | Martensitic Transformation –                             | 44.1   | D                                                    |
| 11th   |    | Simplified Transformation Cooling Curves                 | 11th   | Revision                                             |
|        | 33 | various heat treatment processeshardening,               |        |                                                      |
|        |    | tempering, annealing, normalizing,                       |        |                                                      |
|        | 34 | Case hardening and surface hardening                     |        | To anneal a given specimen                           |
| 12th   | 35 | Types of heat treatment furnaces                         | 12th   | and find out difference in                           |
|        | 36 | Test of unit 4                                           |        | hardness as a result of                              |
|        | 37 | Important sources of plastics, Classification-           |        |                                                      |
| 13th   | 31 | thermoplastic and thermo set and their uses              | 13th   | Revision                                             |
| 1301   | 38 | Various Trade names of engg. Plastic Coatings            | 1501   | Revision                                             |
|        | 39 | Test of unit 5                                           |        |                                                      |
|        | 40 | Composites-Classification, properties, applications      |        | To normalize a given                                 |
| 14th   | 40 | Ceramics-Classification                                  | 14th   | specimen and to find out the                         |
| 14111  | 41 | properties, applicationsHeat insulating materials        | 14111  | difference in hardness as a                          |
|        | 42 | Test of unit 6                                           | 1      | result of normalizing                                |
|        | 43 | Properties and uses of Asbestos, Glass wool,             |        | To harden and temper a                               |
| 1.541- | 43 | thermocole, cork, mica                                   | 1.541- | specimen and to find out the                         |
| 15th   | 44 | Overview of tool and die materials                       | 15th   | difference in hardness due to                        |
|        | 45 | Materials for bearing metals, Spring materials           |        | tempering.                                           |
|        | 16 | Materials for Nuclear Energy, Refractory materials       |        |                                                      |
| 1.6.1  | 46 |                                                          | 161    | <i>p</i>                                             |
| 16th   | 47 | Revision And Assignment                                  | 16th   | Revision                                             |
|        | 48 | Test of unit 7                                           | 1      |                                                      |

#### GATEWAY INSTITUE OF ENGINEERING & TECHNOLOGY, SONEPAT

Name of the Faculty :Mr. NAVNEET RAJ (Theory + Practical)

Discipline : MECHANICAL ENGINEERING

Semester :4TH

Subject : I.C ENGINES

Lesson Plan Duration:16 WEEKS( JANUARY TO APRIL )

|       |        | THEORY                                                    |          | PRACTICAL                                   |
|-------|--------|-----------------------------------------------------------|----------|---------------------------------------------|
| WEEK  | LECTUR | TOPIC (INCLUDING ASSIGNMENT, TEST)                        | PRACTICA | TOPIC                                       |
|       | E DAY  |                                                           | L DAY    |                                             |
|       | 1      | Introduction.                                             | ]        | Study of a two stroke engine using cut      |
| 1st   | 2      | Working principle of two stroke                           | 1st      | section model, note the function and        |
|       | 3      | Four stroke cycle,SI engines and CI engines,              |          | material of each part.                      |
|       | 4      | Otto cycle, diesel cycle and dual cycle                   |          |                                             |
| 2nd   | 5      | Location and functions of various parts of IC engines     | 2nd      | Revision                                    |
|       | 6      | I.C engine materials used,Concept of IC engine terms      | 1        |                                             |
|       |        | Bore, stroke, dead centre, Crank throw, compression ratio |          |                                             |
|       | 7      | ·                                                         | ]        | Study of a four stroke engine using cut     |
| 3rd   |        | Concept of carburetion, Air fuel ratio                    | 3rd      | section model. Note the function of each    |
| 314   | 8      |                                                           | Sid      | part.                                       |
|       | 9      | Simple carburator and its application                     | 1        | part.                                       |
|       | 10     | Simple carburetor and its application,                    |          |                                             |
| 4.1   |        | Simple carburetor application,                            | 4.1      | <u>.</u>                                    |
| 4th   | 11     | MPFI,Common rail system,                                  | 4th      | Revision                                    |
|       | 12     | Super charging ,CRDI,(ASSIGNMENT)                         |          |                                             |
|       | 13     | Components of fuel system                                 | 1        |                                             |
| 5th   | 1.4    | Description of fuel feed pump, Working of fuel feed pump  | 5th      | Study of cooling of IC engine.              |
|       | 14     |                                                           | 4        | , , ,                                       |
|       | 15     | Fuel injection pump,Injectors                             | ļ        |                                             |
|       | 16     | (TEST)                                                    |          |                                             |
| 6th   | 17     | Description of battery coil                               | 5th      | Revision                                    |
|       | 18     | Magnet ignition system                                    |          |                                             |
|       | 19     | Electronic ignition system,                               | 1        |                                             |
| 7th   | 20     | Fault finding in ignition system                          | 7th      | Determination of BHP by dynamometer.        |
|       | 21     | Remedial action                                           |          |                                             |
|       | 22     | Function of cooling system in IC engine,                  |          |                                             |
| 8th   | 23     | ASSIGNMENT                                                | 8th      | Revision                                    |
|       | 24     | Air cooling                                               | 1        |                                             |
|       | 25     | ,Water cooling system,                                    |          | Study of battery ignition system of a       |
| 9th   | 26     | ,Water cooling system use of thermostat,                  | 9th      | multi-cylinder petrol engine stressing      |
| Jui   |        | Radiator andforced circulation in water cooling           | 7111     | ignition timings, setting, fixing order and |
|       | 27     | (description with line diagram)                           |          | contact breaker: gan adjustment             |
|       | 28     | Function of lubrication,                                  | 1        |                                             |
| 10th  | 29     | Types and properties of lubricant                         | 10th     | Revision                                    |
|       | 30     | Lubrication system of engine                              |          |                                             |
|       | 31     | Lubrication and remedial action                           |          | Morse test on multi-cylinder petrol         |
| 11th  | 32     | Fault finding in cooling                                  | 11th     | engine.                                     |
|       | 33     | Reviesion                                                 |          | engine.                                     |
|       | 34     | (TEST)                                                    |          |                                             |
| 12th  | 35     | Introduction to testing                                   | 12th     | Revision                                    |
|       | 36     | Engine power - indicated and brake power                  | 1        |                                             |
|       | 37     | Efficiency - mechanical, thermal.                         |          |                                             |
| 13th  | 38     | Efficiency - relative and volumetric                      | 13th     | Study of lubricating system of IC engine    |
|       | 39     | Methods of finding indicated                              | 1        |                                             |
|       | 40     | ASSIGNMENT                                                |          |                                             |
| 14th  | 41     | Brake power                                               | 14th     | Revision                                    |
|       | 42     | Morse test for petro1 engine                              | 1        |                                             |
|       | 43     | Heat balance sheet                                        |          |                                             |
| 15th  | 44     | Concept of pollutants in SI and CI engines                | 15th     | Local visit to roadways or private          |
| 15011 | 45     | Pollution control,                                        | 1541     | automobile workshops.                       |
|       | 46     | norms for two or four wheelers – BIS – I, II,             |          | automobile workshops.                       |
|       | 40     |                                                           | 1        |                                             |
| 16th  | 47     | III and IV methods of reducing pollution in IC            | 16th     | Revision                                    |
|       | 48     | engines,                                                  | 1        |                                             |
| L     | 48     | Reviesion                                                 | l        |                                             |

### GATEWAY INSTITUE OF ENGINEERING & TECHNOLOGY, SONEPAT

Name of the Faculty :Mr. AJAY KUMAR

Discipline : MECHANICAL

Semester :4TH

Subject: WORKSHOP TECHNOLOGY II
Lesson Plan Duration: 13 WEEKS( JANUARY TO APRIL)

|        |        | Work Load (L/P) per Week (in hours): L-03, P-00                             |
|--------|--------|-----------------------------------------------------------------------------|
|        |        | THEORY                                                                      |
|        | LECTUR |                                                                             |
| WEEK   |        | TOPIC (INCLUDING ASSIGNMENT, TEST                                           |
| 1st    |        | Cutting Tools - Various types of single point cutting tools and their uses, |
|        |        | Single point cutting tool geometry, tool signature and its effect           |
|        | 3      | Heat produced during cutting and its effect,                                |
| 2nd    | 4      | Cutting speed, feed and depth of cut and their effect                       |
|        | 5      | Cutting Tool Materials & its Properties                                     |
|        | 6      | Revision                                                                    |
| 3rd    | 7      | Test                                                                        |
|        | 8      | Principle of turning & Function of various parts of a lathe                 |
|        | 9      | Classification of various types of lathe                                    |
| 4th    | 10     | Work holding devices                                                        |
|        | 11     | Lathe tools                                                                 |
|        | 12     | Lathe operations                                                            |
|        |        | Cutting parameters of lathe                                                 |
| 5th    |        | Speed ratio, preferred numbers of speed selection                           |
|        |        | Lathe accessories                                                           |
| 6th    | 16     | Introduction to capstan and turret lathe                                    |
|        |        | Revision                                                                    |
|        |        | Principle of drilling &Classification of drilling machines                  |
| 7th    |        | Various operation performed on drilling machine                             |
| , (11  |        | Speeds and feeds during drilling, machining time.                           |
|        |        | Types of drills & nomenclature of a drill                                   |
| 8th    |        | Drill holding devices                                                       |
| Oth    |        | Revision                                                                    |
|        |        | Principle of boring & Classification of boring machines                     |
|        |        | Boring tools, boring bars                                                   |
| 0.1    |        | boring heads.                                                               |
| 9th    |        | Working principle of shaper, planer and slotter                             |
|        |        | Type of shapers                                                             |
| 1.041- |        | **                                                                          |
| 10th   |        | Type of planers Types of tools used and their geometry                      |
|        |        | Speeds and feeds of all processes                                           |
| 11th   |        | Introduction broaching & types                                              |
| 11111  |        | Elements of broach tool & nomenclature                                      |
|        |        | Types and tool material                                                     |
| 12th   |        | Importance and use of jigs and fixture                                      |
| 12tH   |        | Principle of location & Locating devices                                    |
|        |        | Clamping devices & Advantages of jigs and fixtures                          |
| 13th   |        | Function of cutting fluid                                                   |
| 13111  |        | Types of cutting fluids                                                     |
|        |        | Difference between cutting fluid and lubricant                              |
| 14th   |        | Selection of cutting fluids                                                 |
| 17111  |        | Common methods of lubrication of machine tools.                             |
|        |        | Revision                                                                    |
| 15th   |        | Test                                                                        |
| 10111  |        | I=                                                                          |

### GATEWAY INSTITUE OF ENGINEERING & TECHNOLOGY, SONEPAT LESSON PLAN

Name of the Faculty: Mr. Abhishek anand (Theory + Practical)

Discipline : Mechanical engineering

Semester :4th

Subject: Machine Design & Drawing Lesson Plan Duration: 16 WEEKS( Jan. to April) Work Load (L/P) per Week (in hours): L-02, P-06

|      |                 | THEORY                                                                                                                            |                  | PRACTICAL                                                       |
|------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------|
| WEEK | LECTUR<br>E DAY | TOPIC (INCLUDING ASSIGNMENT, TEST)                                                                                                | PRACTICAL<br>DAY | ТОРІС                                                           |
| 1st  | 1               | Design – Definition, Type of design, necessity of design.<br>Comparison of designed and undesigned work.                          | 1                | Designing of any Machine parts without appropriate design work. |
| 180  | 2               | Design procedure Characteristics of a good designer.                                                                              | 2                | Designing of any Machine parts with appropriate design work.    |
| 2nd  | 3               | Design terminology: stress, strain, factor of safety, factors affecting factor of safety.                                         | 3                | Design Procedure                                                |
| ZIIG | 4               | stress concentration, methods to reduce stress concentration, fatigue, endurance limit.                                           | 4                | drawing of stress reduction by various methods                  |
|      | 5               | General design consideration, Codes and Standards (BIS standards)                                                                 | 5                | Codes and Data book intro.                                      |
| 3rd  | 6               | Properties of engineering materials: elasticity, plasticity, malleability, ductility, toughness, hardness and resilience.         | 6                | Stress -Strain Curve                                            |
|      | 7               | Fatigue, creep,tenacity, strength.                                                                                                | 7                | Drawing of fatigue parts.                                       |
| 4th  | 8               | Selection of materials, criterion of material selection                                                                           | 8                | Revision                                                        |
|      | 9               | Various design failures-maximum stress theory, maximum strain theory.                                                             | 9                | Graphical representation of stress & strain theory              |
| 5th  | 10              | Maximum strain energy theory                                                                                                      | 10               | Graphical representation of strain energy theory                |
|      | 11              | Classification of loads                                                                                                           | 11               | Revision                                                        |
| 6th  | 12              | Design under tensile, compressive and torsional loads                                                                             | 12               | Revision                                                        |
|      | 13              | numericals                                                                                                                        | 13               | Tutorial classes                                                |
| 7th  | 14              | Type of shaft, shaft materials, Type of loading on shaft, standard sizes of shaft available                                       | 14               | Drawing of Shaft                                                |
|      | 15              | Shaft subjected to torsion only, determination of shaft diameter (hollow) on the basis of Strength criterion & Rigidity criterion | 15               | Shaft design on basis torsion and bending                       |
| 8th  | 16              | Shaft subjected to torsion only, determination of shaft diameter (Solid) on the basis of Strength criterion & Rigidity criterion  | 16               | Shaft design on basis torsion and bending                       |
| 0.45 | 17              | Determination of shaft dia (hollow and solid shaft) subjected to bending                                                          | 17               | Design of Axle                                                  |
| 9th  | 18              | Determination of shaft dia (hollow and solid shaft) subjected to combined torsion and bending .                                   | 18               | Revision                                                        |
| 10th | 19              | Revision and Numericals.                                                                                                          | 19               | Test of unit 1,2 &3                                             |
| 1001 | 20              | Types of key, materials of key, functions of key                                                                                  | 20               | Assignment                                                      |
|      | 21              | Failure of key (by Shearing and Crushing).                                                                                        | 21               | Revision                                                        |
| 11th | 22              | Design of key (Determination of key dimension)                                                                                    | 22               | Drawing of Sunk Key-<br>Rectangular & square parallel<br>key    |
| 12th | 23              | Effect of keyway on shaft strength. (problems)                                                                                    | 23               | Drawing of Sunk Key-<br>Rectangular & square taper<br>key       |
|      | 24              | Introduction, Advantages and Disadvantages of screw joints, location of screw joints.                                             | 24               | drawing of woodruff and<br>Saddle key, Kennedy key              |
| 13th | 25              | Important terms used in screw threads, designation of screw threads                                                               | 25               | Drawing of screw threads                                        |



| 13111 | 26 | Initial stresses due to screw up forces, stresses due to combined forces                            | 26 | Revision                                                               |
|-------|----|-----------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------|
| 14th  | 27 | Design of power screws (Press, screw jack, screw clamp)                                             | 27 | Drawing of Screw Jack                                                  |
|       | 28 | Types of cams and followers (theoretical)                                                           | •  | Revision of unit 5 and C.T                                             |
|       | 29 | Profile of cams for imparting Uniform & Simple harmonic motion with knife edge followers.           | 29 | Drawing of CAM Profile                                                 |
| 15th  | 30 | Profile of cams for imparting Uniformity accelerated and retarded motion with knife edge followers. | 30 | Drawing of CAM Profile                                                 |
|       | 31 | Nomenclature of gears and conventional representation                                               | 31 | Drawing the actual profile of involute teeth gear by different methods |
| 16th  | 32 | Revision and Numericals.                                                                            | 32 | Perivious yr. paper discussion.                                        |